
Performance Analysis of Distributed Object-Oriented Applications

Final Report ,,?_ _' 9" _7

NASA Grant NCC3-572

Period April 1, 1998 to December 31, 1998

James D. Schoeffler

Professor of Computer Science

Cleveland State University

Cleveland, Ohio 44115

Performance Analysis of Distributed Object-Oriented Applications

Summary of Research

The purpose of this research was to evaluate the efficiency of a distributed simulation
architecture which creates individual modules which are made self-scheduling through

the use of a message-based communication system used for requesting input data from
another module which is the source of that data. To make the architecture as general as

possible, the message-based communication architecture was implemented using

standard remote object architectures (CORBA and/or DCOM). A series of experiments

were run in which different systems are distributed in a variety of ways across multiple

computers and the performance evaluated. The experiments were duplicated in each case

so that the overhead due to message communication and data transmission can be

separated from the time required to actually perform the computational update of a
module each iteration. The software used to distribute the modules across multiple

computers was developed in the first year of the current grant and was modified

considerably to add a message-based communication scheme supported by the DCOM

distributed object architecture.

The resulting performance was analyzed using a model created during the first year of

this grant which predicts the overhead due to CORBA and DCOM remote procedure calls

and includes the effects of data passed to and from the remote objects. A report covering

the distributed simulation software and the results of the performance experiments has

been submitted separately and is titled: "A Component-based Distributed Simulation

Architecture and its Performance", J. D. Schoeffler, December 28, 1998.

The above report also discusses possible future work to apply the methodology to

dynamically distribute the simulation modules so as to minimize overall computation

time.

NASA GRANTEE
NEW TECHNOLOGY REPORT

NASA requires each research grantee, research contractor, and research subcontractor to report new technology to the

NASA Technology Utilization Office. The required reports and corresponding schedules arc as follows:

Title of Report Form Number Timetable

Individual Disclosure NASA 666A The grantee discloses each discovery of new technology

individually, at the time of its discovery.

Interim Report NASA C-3043 For multi-year grants, the grantee summarizes the previous year's

disclosures on an annual basis. The first Interim New Technology
(NT) Report is due exactly 12 months from the effective date of

the grant.

Final Report

Grantee Name

and Address

NASA C-3043 The grantee submits a cumulative summary of all disclosed

discoveries. This Final NT Report is submitted immediately

following the grant's technical period of performance.

-"

Report Submitted by:

Telephone Number:

NASA Grant Title:

NASA Grant Number:

NASA Project Manager:

Grant Completion Date:

Today's Date:

rz.1"511

.=
(

Foll

New technology may be either reportable items or subject inventions.
A reportable Item is any invention or discovery, whether or no_ parent•hie, th_ was conceived or first I_ually IraJuced to practice during the

performanceof thegrant,contractorsubconu'act.Largebusineucontractorsandsubconuactoramustdisclor¢w.portablciten_ astheyamdiscovered
andsubmitanoncumulativelistof d'w..senew technologyitemson anannualbasis[ref:InterimNT Report]and• cumulativelistat thecomplmionof
thegrant,contract(or subcontract)period[ref:F'malNT Report].

A subject Invention is any invention or discovet'y, which is or may bg 9atemahle, thal wt_ conceived or first actually reduced to practice during the

performance of the contract or subcontract. Gramees, small business contractors and subcontractors must, at • minimum, disclose subject inventions

they are discovered and submit a cumulative list of these new technology items on an annual basil [_f: Interim NT Report] and at the completion

of Ihe grant, contract (or subcontract) period [_f: Final NT Repo_].

Grantees. small business contractors and small business subcontractors are only required to disclose and report pttcottble items (subject inventions).

However. we encourage that grantees, small business contractors and small b_inet_ subcontractors di_lose both patenlable and nonpatentable (repo_-

able) items, both of which are automatically evaluated for publication as NASA tech briefs, and considered for NASA Tech Brief awards.

PLEASE COMPLETE THE REVERSE SIDE OF THIS FORM AND MAIL TO THE FOLLOWING ADDRESS:

NASA Lewis Research Center

Attn: Kathy Kerrigan

Technology Utilization Office; Mail Stop 7-3
Cleveland, Ohio 44135

NASA C-3043 (2/96)

I. General Information

1. Type of Report: (

2. Size of Business: (

/
) Interim (_) Final

) Small () Large
(_) Nonprofit Organization

3. Have any nonpatel/table items resulted from work performed under this subcontract during this reporting period?
()yes (_/)no

t

4. Have any subject j_ventions resulted from work performed under this subcontract during this reporting period?

()yes (_/)/no
/

5. Are new technolo_/y items (nonpatentable or patentable) being disclosed with this report?
() yes (v) no

II. New Technology Items

Please provide the title(s) of all new and previously disclosed new technology items conceived or first actually reduced

to practice under this grant.

Title _ Patent Appl. Patentable

_umber V__ Item Item

1. () () ()
2. () () ()
3. () () ()
4. () () ()

IIL Subcontractors

Please complete the following section listing all research subcontractors participating to date. Include each

subcontractor's name, address, contact person, and telephone number.

IV. Certification

! certify that active and effective procedures ensuring prompt identification and timely disclesurts of rtportsble new technology Item

have been followed. Furthermort, I certify that all new technology Items rtqulred to be dlsclmed and conceived during the period Idenll/led

oa th/s form, hare beea d_ed to NASA.

Name and Title of Authortaed Official

Slgnaturt and Date Grant Monitor

0

o

f_T

©

/ r_

o

°_

m

r _

o

0 0 0

A Component-based Distributed Simulation Architecture and its Performance

James D. Schoeffier

Department of Computer Science

Cleveland State University

NASA Grant NCC 3-572

Summary

The purpose of this report is to evaluate the efficiency of a distributed simulation

architecture which creates individual modules which are made self-scheduling through

the use of a message-based communication system used for requesting input data from

another module which is the source of that data. To make the architecture as general as

possible, the message-based communication architecture is implemented using standard

remote object architectures (CORBA and/or DCOM). This report describes the

simulation architecture and presents a series of experiments in which different systems

are distributed in a variety of ways across multiple computers and the performance

evaluated. The experiments are duplicated in each case so that the overhead due to

message communication and data transmission can be separated from the time required to

actually perform the computational update of a module each iteration.

1 Overview of the distributed simulation architecture

The objective of a distributed computation for simulation of an aircraft engine is to

perform computation in parallel on a set of processors coupled across a local area

network. The engine may be characterized by a set of inter-related components with the

simulation being carded out either for a series of time steps or a series of iterations or

both. In order to gain flexibility in changing component designs, it is desirable that

components be assignable to any processor in the set with no master conU'ol scheduling

the execution and data exchange of each component. An advantage of this is the ability to

base scheduling dynamically on the relative processor needs of each component.

The distributed simulation investigated in this report achieves this scheduling

independence by representing components as modules with inputs and outputs each of

which is a set of variables. An output of one component is coupled via connectors to an

input of another component. This implies that the first component must calculate its

output variables each iteration or time-step before the second component can use those

values as input to is computation in the corresponding iteration or time-step.

A cooperative synchronization of the component executions is achieved by required that

components request their inputs and wait until they have been received before executing.

In this way, modules execute as soon as they are ready and upon completion of execution,

send outputs which in turn trigger executions of other components waiting for their

inputs.

-1-

A Component-based Distributed Simulation Architecture and its Performance

An expected payoff of this architecture is the ability to adapt or change a distribution

during the running of a simulation and to base the choice of distribution of components

upon current and past execution time requirements.

1.1 Solvers and modules and their design constraints

Components are represented by objects whose class (in the C++ sense) provides only the

behavior of the component (code) related to the initialization of a component and the

carrying out of the execution associated with an iteration or time-step. All other behavior

is inherited from a base class which handles all acquiring of input data, triggering of the

update execution, and sending of outputs to other modules.

The intent here is to permit the creation of component code related to the specific

function of the component and not to have to consider the details of how the simulation

actually takes place.

Two kinds of component base classes are provided: the "module" class which is

associated with an actual engine component and the "solver" class which is associated

with the requirements of a conventional solver, namely, the sending of inputs to one or

more components to start an iteration (time-step), the receiving of the components'

outputs, and the recalculation of inputs to be sent to start the next iteration (time-step).

An interconnection of a set of modules which causes a closed loop must be broken by the

insertion of a solver component to prevent a deadlock that would occur as every module

in the loop requests its input from the previous component. This leaves all of the modules

waiting for input and unable to compute. Solvers can also be used to control the rate at

which convergence in an iteration takes place.

1.2 Components and inter.component communication

Each component input is attached to a connector which is connected to another connector

that in turn is connected to an output of another component. Hence each component is

directly connected to one connector for each of its inputs and its outputs and these

connectors are in the same process as the component itself. Connectors are created as the

simulation is initialized and distributed. Each connector is provided with the location of

its mate connector (the connector it is connected to) and whether the data it is connected

to a module input or a module output.

Thus the requesting of an input (for a specific iteration number or time-step number)

involves the associated connector requesting that data through its mate connector which

in turn records the request with the component supplying that data. The connectors hide

the details of whether the two connectors are in the same process, separate processes on

the same processor, or on separate workstations on the network. Upon creation, they

-2-

A Component-based Distributed Simulation Architecture and its Performance

discover the type of connection and use the most appropriate implementation for the

requesting of data and the sending of output data.

1.3 Message-based inter-process communcation

Since components may request inputs from multiple source components, it is desirable to
make the handling of requests and replies as concurrent as possible so as not to place

bottlenecks in the path of the computation. To this end, each component is provided a

message queue in which messages (requests for data or replies containing data) are

placed. In order to make the message system as machine independent and operating-
system independent as possible, it is itself implemented using distributed-object
technology, CORBA or DCOM. Thus a messaging interface is defined and that interface

on each message queue made available to all the components. Because of the
characteristics of CORBA and DCOM, multiple components in separate machine can

safely use their interface to pass a message to a single component without any

concurrency problem. Using these essentially standard disributed technologies, it is
expected that the systems will be less dependent upon computer vendor, operating system

version, etc.

1.4 Module group architecture

To minimize any overhead, components may be grouped into a "module group" which is
executed by a single process. A module group may contain one or many modules or
solvers in it, and has one message queue which serves all the modules and servers within

it. The module group is inside a CORBA/DCOM object whose interface reference or

pointer is provided to all other module groups.

Within a module group, components can communicate with very small overhead:

messages go directly from component to component without passing through any

message queue.
Since the module group is a process, only one module can ever execute at any instant.
Hence a group which contains two modules, for example, is best allocated to modules
which can't execute concurrently (e.g., the input of one module comes from an output of

the other module).

Module groups are created dynamically from a specification of module interconnections
and a choice of distribution. In the current implementation discussed in this report, a

module group cannot be modified during a run. Hence modules cannot move from

module group to module group during a given simulation run. They can move between
runs. The design is such that the implementation could be easily modified to allow them
to move during a run but this is lef_ to a future effort.

Modules in separate module groups transparently use the CORBA/DCOM technology for

sending and receiving messages and hence incur the overhead of such a function call. The
overhead in these calls has been measured and modeled [Schoeffler, 1998] and is

presented later in this report.

-3-

A Component-based Distributed Simulation Architecture and its Performance

1.5 Module group scheduler

Within each module group (process) a group scheduler allocates the process in a run-to-
complete mode to the following priorities.

First, any data messages in the message are delivered to the waiting module or solver

component. This involves copying the message data into a pre-allocated data object for

each input of each component. In this way, the module does not have to be active to

receive a data message which has caused it to block until it is received.

Second, any request message is passed to a receive function of the associated component.

If the request is for data that is not yet available, the request is simply recorded for later
delivery by the component. If the data is available, the object immediately sends the data
via a message through its connector. In either case, the state of the component is updated.

For example, the arrival of the last input data message changes the component into a

ready-to-execute state. Similarly, the arrival of the last request for output data to a

component which has executed and is waiting to deliver its outputs causes it to change to

the next iteration (time-step) and be ready to run (to request inputs for the next iteration).

Third, a ready-to-run module is allowed to execute. It may request inputs or perform its

update calculation for the current iteration or time-step, ready components are scheduled
run-to-completion on a first-come-first-served basis.

1.6 Architecture of groups within a processor

Each processor may contain multiple module groups, each of which is created as a

separate DCOM or CORBA object. Each module group is allocated its own thread of
execution that is scheduled by the machine operating system on a time-shared basis.

All messages arrive to the process main thread which then deposits the messages in the

message queue of the appropriate module group. The message queues represent the only

place in the overall design where critical-section processing is required in order to prevent
concurrency problems (e.g., one thread adding a message to a queue and another thread

removing a message from a queue at the same time). This also means that the only

information sharing among threads is message data. In particular, threads do not attempt
to pass through different module groups so that code has to contain critical sections with
their attendant overhead.

1.7 Network architecture

The processors are connected into a local area network. The details of the network are

transparent to DCOM and CORBA. The current implementation uses one application

program to start up a simulation by reading connection and distribution information from

a file and then creating and interconnecting the module groups in the various machines. It

is expected that the interconnection information would normally come from an interactive

-4-

A Component-based Distributed Simulation Architecture and its Performance

user via a GUI (graphic-user-interface) and the distribution information would optionally

come from the interactive user or automatically from a distribution-scheduler which

maintained past history of compute times of the various modules and adapted as the

simulation proceeds.

2 Performance of the architecture

2.1 Potential parallel execution of solvers and modules

The architecture treats each module as though it were executing independently of the

others by structuring it so that it passes sequentially through a series of states which result

in its coordination with other objects no matter where they execute. These states are:

State 1. Starting an iteration

Request outputs from other modules which are inputs to this module. The

requests are for the specific iteration desired.

Proceed to state 2 only after all requested inputs have actually been received.

State 2. Updating the outputs of the module

Perform the computation associated with this iteration using the inputs received.

Upon completion, go to state 3.

State 3. Sending results to modules which take this module's output as one of their inputs

Send output data to all request already received.

The number of modules that use outputs of this modules as their inputs is

known. Walt for any additional request for data are received and then send

output data to that module.

When the output has been sent to the last module, proceed to the next iteration in

state 1.

Clearly no module can begin its computation until all its required inputs are present but

may begin as soon as the last input arrives. If there is only one module assigned to

execute in a given processor, then it will begin computation as soon as its inputs have

arrived. If there are multiple modules in a processor, then the modules that are ready to

compute must compete for the processor. The performance of a distributed set of modules

is then very much dependent upon how they are allocated to processors for execution.

Consider the following simple example of one solver (S) and two modules (A and B):

-5-

A Component-basedDistributedSimulationArchitectureandits Performance

This system is such that no parallelism is possible. At the start of iteration k, module A

requests its single input from the Solver (its output for iteration k) which immediately

provides it. Concurrently, B requests its input from module A (its output for iteration k)

which cannot provide it yet. Once the solver S has sent its output, it immediately requests

its input from module B (its output for iteration k) which cannot provide it. Only module

A can execute. Upon completing its computation, it immediately provides its output to

module B (because it has previously received a request). Module B can then execute in

iteration k and immediately provides its output to the solver (again because it has

previously received the request). Now only the solver S can execute. Thus there is no

incentive to allocate these modules to separate machines because of the way the solver

and modules have been structured.

Consider an alternate version of this example as shown below:

Now the solver has two inputs and two outputs. Hence the requests by modules A and B

can both be satisfied at the beginning of the iteration. Hence both A and B can begin their

execution for this iteration as soon as their data is received. Of course, this will not be

completely simultaneous because the solver replies to one request and then the next.

While A and B are computing, S will request inputs from A and B and then wait until

each completes its computation and sends its input to S. Modules A and B will also

request inputs for their next iteration. Solver S will then compute and when complete,

begin the next iteration by sending the computed outputs to A and B.

Now computation of A and B can be overlapped in time and it is advantageous to assign

them to different processors. Note that solver S may be assigned to either processor with

little effect on the concurrent processing since modules A and B always are waiting

while S is computing and vice versa (except for activities such as requesting and sending

messages).

Although the allocation of modules to module groups and module groups to processors is

obvious in simple situations like the above, it is far less obvious in more realistic

situations. The allocation is very dependent upon the length of computation time

associated with each module each iteration and the amount of time required to transmit

-6-

A Component-based Distributed Simulation Architecture and its Performance

requests for data and receive replies to those request. For the purpose of allocation, a

model of the computation is desired which can be used as a basis for the allocation.

This report emphasizes the portion of the model associated with time to transmit

messages using DCOM or CORBA as a basis for the transmission among processors.

Since the simulation of aircraR engine models is highly iterative, it is expected that

accurate computation times per iteration will be readily available and when combined

with the message transmission portion of the model, can be used as a basis for allocation

of modules to processors and even re-allocation to processors as the computation

proceeds.

2.2 The experimental implementation

The implementation of distributed simulation architecture reported previously [schoeffler,

1997] used a message-based communication architecture developed at NASA LERC

called APPL. This program was redesigned leaving the design of the module, connector,

module group, and scheduling identical but replacing the APPL protocol with the

message architecture implemented using object technology. Specifically, the

implementation was carried out using DCOM and running on ALR multi-processor
workstations.

To concentrate on the overhead introduced by the distributed architecture, the program

was specialized to constrain all modules and solver components to have the same update

time (execution time to calculate output variables once input variables were available). In

the experimental runs, this common update time could be set to zero or some arbitrary

time. When the update time is set to zero, the elapsed execution time includes the time to
prepare, send, and receive messages. Furthermore, the inputs and outputs were
constrainted to all be arrays of doubles with identical array sizes. This size could be set at

at any size in the range zero to 1000 and was varied. For a zero length data array, there is
no message preparation overhead (e.g., packing data values into a message) and hence all

elapsed time is pure overhead time. Note that by assigning all modules to the same

module group, there is no message-related overhead at all nor is there any overhead at all

due to the use of DCOM or CORBA. Then by varying message length for the same

compute time and module distribution, the effects of message size can be easily
determined.

2.3 Message overhead (DCOM)

A model of CORBA and DCOM overhead involved in passing messages which takes into

account the machines involved and the actual argument types and sizes was created

previously [Schoeffler, 1998]. This model typically provided accuracy on the order of

15%-20%. It attempts to take into account both operating system overhead, message

marshalling overhead (dependent upon argument sizes and types), and direction of

message transfer. The latter includes [out] -- sending data from the source to the function

called via DCOM or CORBA; [in]-- sending no data to the function but receiving data

-7-

A Component-based Distributed Simulation Architecture and its Performance

back from the function; and [in-out] -- sending data to the function and also receiving

data back again.

In the above report, the overhead model is taken to be:

O(mbm2,k,r) = T(mbk,r) + T(m2,k,r) + "In

where T(mj,k,r) denote the portions of a function-call overhead within machinej and Tn is

the network transmission time (for a specific network n) and is non-zero only for remote

calls. The linear approximation to the observed overhead gives

T(m,k,r) = C(m,k,r) + L*V(m,k)

where:

C(m,k,r) is a constant dependent upon the machine m, the argument type k, and

the call-type r

L is the length in bytes of the argument passed in both directions. This means it is

the argument length for an input argument or an output argument but is twice the

argument length for an input-output argument.

V(m,k) is a constant dependent upon the machine m and argument type k but not

the call-type (local or remote). V has units of milliseconds per byte since L

(argument length) is in bytes. It is convenient to use units of milliseconds-per-

kilobyte because of the size of V. This of course would change the term to

0.00 l*L*V(m,k);

The network transmission overhead is

"In = L*S_

where L is the argument length as before and Sn is the transmission time of the network in

milliseconds per byte (e.g., 0.0008 milliseconds/byte or 0.8 milliseconds/kilobyte for a

10MHz network). The actual message passed across the network must include some

additional bytes (e.g., for the message header) but this time is dependent upon the details

of the network protocol and the model assumes it is included in the fixed-time portion of

the model.

Notice that both the fixed and length-dependent overhead terms are incurred at both the

client (function-call source) and server (destination executing the function itself).

-8-

A Component-based Distributed Simulation Architecture and its Performance

There are 3 parameters per argument type or a total of 9 parameters but each computer

may have different values for these parameters. Hence the parameters must be determined

from experiments involving the different kinds of computers of interest.

The underlying component technology (DCOM or CORBA) is an additional factor of

course so models are presented for both technologies for machines supporting both

DCOM and CORBA (Intel machines running the NT4 operating system) but only for

CORBA for other machines (UNIX machines).

The parameters reported in [xxxxxxxxxxx] for the COM/DCOM technology in Intel 200

MHz machines are the following:

input argument

outputargument

input-outputarsurnent

Fixed Local

(MS)
O.lO

O.11

O.lO

Fixed Remote (MS) Variable (MS/KB)

0.39 0.75

0.42 1.08

0.38 0.79

The model evaluated in this paper uses DCOM calls to request data and to send the

requested data. Because the source of the data may or may not be ready to send the data at

the moment it is requested, two separate calls are made: one to request the data, and one

to send the data. The request call contains no data and hence is equivalent to a single

zero-length argument. The reply call does contain data whose size can vary considerably.

In all cases however, the call consists of a single argument with an input-type argument.

Furthermore, all experiments were done using a group of identical Intel processors

connected on a 10 MHz either net. Hence the overhead models of interest reduce to the

following:

O(Local Request Messsage) = 2*0.10 ms

O(Local Reply Message, L bytes) = 2*0.10 + 2'0.75"L/1000 ms

O(Remote Request Messsage) = 2*0.39 ms

O(Remote Reply Message, L bytes) = 2*0.39 + 2'0.75'L/1000 + 0.0008*L ms

Here the parameters are from the input-argument line of the above table. The length-

dependent parameter has units of milliseconds per kilobyte. Since the length L is in bytes,

a factor of 0.001 appears in the equation.

These equations further simplify to the following:

O(Local Request Messsage) = 0.20 ms

O(Local Reply Message, L bytes) = 0.20 + 0.0015*L ms

-9-

A Component-based Distributed Simulation Architecture and its Performance

O(Remote Request Messsage) = 0.78 ms

O(Remote Reply Message, L bytes) = 0.78 + 0.0095'L ms

Experiments were tam with message data of 4 different lengths: 4, 100, and 1000 doubles

or lengths of 32, 800, and 8000 bytes. Using the above model equations, the overhead

times were computed and are shown in the following table:

Data Length (bytes)

0

32

80O

8000

Local (ms) Remote (ms)
0.20 0.78

0.25 1.08

1.40 8.38

12.20 76.78

In this table, the first row corresponds to messages with no data (request messages). A

module with two local inputs requires two request messages which take 0.20 ms each.

The local modules supplying those inputs each take 1.40 ms for an 800 byte messsage (an

array of 100 doubles) or 12.20 ms each for an array of 1000 doubles. If the same module

was getting its inputs from two remote modules, the request messages are about 4 times

longer and the data messages about 6 times longer.

The total of two request messages and two reply messages would be 24.8 ms or 155 ms

for the 1000-double array for the local and remote cases. If the module computation time

per iteration were 1 second per iteration, these overhead times are 3% and 16%

respectively. For long computation times, the message overhead is not important and only

the actual amount of overlapped computation is important to the response time for a set of

modules. For module computation times of 0.25 seconds, however, the message overhead

percentage jumps to 12% and 64% respectively. Clearly, remote processors lead to

overtime comparable to the overlap time. This is especially true when the various

modules have a wide distribution of computation time per module.

2.4 Experimental configurations

Two basic simulation configurations were experimentally investigated, each for a variety

of different data object sizes, two different update times (0 and 0.719 seconds), and for a

variety of different allocations among two network-coupled workstations each containing

four processors. This does not cover the more practical case where the updates times of

the modules per iteration vary significantly but is useful to see the effects of parallelism

and message overhead.

The two configurations are shown below:

-10-

A Component-basedDistributedSimulationArchitecture and its Performance

S

r-
Four Module Configuration

S1 S2

I

I

Eight Module Configuration

Notice that solvers have been used in both configurations to break closed loops of

modules, one in the four-module configuration and two in the eight-module

configuration.

Possible parallelism in the four module configuration is limited two modules B1 and B3

executing in parallel (because both get their input from the solver). Module B2 cannot

execute until B 1 completes. The solver cannot execute until both B2 and B3 complete.

Hence for equal 1 second update times and no overhead, this configuration would require

3 seconds to execute each iteration provided modules B I and B3 are allocated to two

different processors (so they can execute concurrently). If they are allocated to the same

processor, then there is no parallelism and the configuration would require 4 seconds to

-11-

A Component-basedDistributedSimulationArchitectureandits Perfomaance

execute one iteration assuming a one second update time for each module. Thus this

configuration allows a maximum reduction of 25% (4 seconds down to 3 seconds).

Maximum parallelism in the eight module configuration is easily seen to be 3 seconds

provided modules B 1, B3, B4, and B6 execute concurrently on 4 processors, modules b2

and B5 execute concurrently on 2 processors, and the two solvers execute concurrently on

two processors. This configuration allows a maximum reduction of 8 seconds down to 3

seconds or 63% assuming no overhead.

2.5 Experimental results

2.5.1 Example 1: The Four Module Configuration

The Four Module Configuration contains one server (two inputs and two outputs) and

three modules. The configuration and results of the experiments are shown in the tables

on the following pages for the case of 4 doubles of data per output, 100 doubles, and

1000 doubles. Each case is shown on two pages. Each of the seven data columns

corresponds to a different experiment involving the distribution of the four modules.

The first 10 rows contain information about the modules and the parameters of the

DCOM performance model used in succeeding rows. The rows "Modules/Process" and

"Processes/Machine" indicate the distribution of the modules among processes and

machines. For example, the first data column shows that there is 1 module per process

and 2 processes per machine. Hence this experiment involves 2 machines each containing

2 processes. There can be no parallelism of the two processes in a machine but it is

possible for there to be parallel computation in the two machines. The fourth data column

shows all modules in 1 processes and hence this represents an experiment with one

machine and one process. This configuration allows no parallel computation. The

succeeding lines display the results of each experiment: the total execution time with the

computational update time of a module being zero seconds or 0.719 seconds; the number

of iterations; and the time per iteration.

Of special interest is the pair of lines, Time/Iteration 0 sec and 0.719 seconds. The former
is all overhead and data transmission time. The latter includes the large update time per

module (and solver).

The remainder of the data shows for each process which modules it contains, the machine

in which it executes, and the total message load per iteration. The table continues on the

next page with the top portion duplicated for readability. The remaining rows reduce the

data. Calculated are the iteration times for all update computation done serially and for all

done in parallel. The actual time is show for comparison. Then the DCOM performance

model is used to calculate the update times for the various message types (the overhead

-12-

A Component-basedDistributedSimulationArchitectureandits Performance

and data transmission times). The second last line shows the addition of the estimated

serial overhead time to the serial module update time. The last shown shows the amount

of reduction via parallel (overlapped) computation from the estimated serial

computational time to the observed time. With the little opportunity for overlap with the

four-module configuration, the results agree with the previously estimated 25% reduction

factor.

-13-

A Component-based DistributedSimulationArchitectureand itsPerformance

The Four Module Configuration Results (4 bytes of data/output)

Date: 8/10/98
System:
A2->BI->B2->A2
A2->B3->A2

ALR model: T = A + B.*Length
Coefficient A (millisecs)
Coefficient B (millisecs/kilobyta)
Total Number of modules and servers
Maximum parallel number of modules

Input: Modules/Process (0=all)
Input: Processes/Machine (0=all)

doubles in data
data rnsg size (bytes)
request msg size (bytes)
module compute time (sece)
iterations
Total time (secs)- 0.719 sec comp
Total time (secs)- 0 sec comp
Total time (secs)- 0 sec comp, 100 its
_meliteration (sece) - 0 sec comp
Time/iteration (secs)- 0.719 sec comp

perf4mt - 4 modules, multi-threaded to use ALR processors
Type Name #inputs #outputs #doubles
Server A2 2 2 4
Module B1 1 1 4
Module B2 1 1 4
Module B3 1 1 4

0.39
0.75

4
3

4
40
4

0.719
11

24.03
0.516

0.0469
2.185

4
40

4
0.719

10
23.31
0.453

0.0453
2.331

4
40

4
0.719

10
21.63
0.375

0.0375
2.163

4
4O

4
0.719

10
28.73
0.110
0.719

0.0110
2.873

4
40

4
0,719

11
23.73
0.156

0.0142
2,157

4
40

4
0.719

11
24.42
0.125

0.0114
2,220

4
40

4
0.719

10
21.63
0.375

0.0375
2.163

ALR1 processes 2 1 1 1 4 2 2
ALR2 processes 2 1 1 0 0 0 0

A2,B2 A2,B2,B3 A2,B2,B2,B3
1 1 1 1

11 20 10 0
22 20 10 0

1 2 1 0
2 2 1 0

A2
Process 1
Modules in process
Machine
#total requests
#total data sends
#requests/iteration
#data sends/iteration

A2

1
11

0
1
0

B1,B3

A2,B2 A2,B2,B3
1 1 1
0 0 0
0 0 0
0 0 0
0 0 0

Process 2
Modules in process
Machine
#total requests
#total data sends
#requests/iteration
#data sends/iteration

B2

2
11
11

1
1

B1 B2 B1,B3 B1
2 2 1 1 1

20 10 0 0 0
20 10 0 0 0

2 1 0 0 0 0
2 1 0 0 0 0

Process 3
Modules in process
Machine

#total requests
#total data sends
#requests/iteration
#data sends/iteration

B1

2
11
11

1
1

B1

Process 4
Modules in process
Machine
#total requests
#total data sends
#requests/iteration
#data sends/iteration

B3

1
0
0
0
0

B3

-14-

A Component-based Distributed Simulation Architecture and its Performance

The Four Module Configuration Results (4 bytes of data/output)

Input: Modules/Process (0=all)
Input: Processes/Machine (0=all)

1 2 3 0 1 2 3
2 1 1 0 0 0 0

doubles in data 4 4 4 4 4
data msg size (bytes) 40 40 40 40 40
request msg size (bytes) 4 4 4 4 4
module compute time (aecs) 0.719 0.719 0.719 0.719 0.719
iterations 11 10 10 10 11
Total time (sece) - 0,719 sec comp 24.03 23.31 21.63 28.73 23.73
Total time (secs) - 0 sec comp 0.516 0.453 0.375 0.110 0.156
Total time (secs) - 0 sec comp, 100 its 0.719
Time/iteration (secs) - 0 aec comp 0.0469 0.0453 0.0375 0.0110 0.0142
Time/iteration (see,s) - 0.719 sec comp 2.185 2.331 2.163 2.873 2,157

4
40

4
0.719

11
24.42
0.125

0.0114
2.220

4
40

4
0.719

10
21.63
0.375

0.0375
2.163

ALR1 processes 2 1 1 1 4 2 2
ALR2 processes 2 1 1 0 0 0 0

One Iteration Compute serial (secs) 2.876 2.876 2.876 2.876 2,876
One Iteration Compute max parallel 2.157 2.157 2.157 2.157 2,167
(secs)
Actual One Iteration Compute (secs) 2.185 2.331 2.163 2.873 2,157

Total No. Rem. Rqst Msgs/iteration 44 40 20 0 0
Total No. Rein. Data Msgs/iteration 44 40 20 0 0
Est. Time/Request Msg (millisecs) 0.393 0.393 0.393 0.393 0.393
Est. Time/Data Msg (millisecs) 0,42 0.42 0.42 0.42 0.42
Est Serial Msg Total Time (seconds) 0.036 0.033 0.016 0.000 0.000
Est Serial Msg Total Time/iter 0.003 0.003 0.002 0.000 0.000
(seconds)

Total Serial Time/iter (seconds)
Reduction Factor

2.876
2.157

2.220

0
0

0.393
0.42

0,000
0.000

2.876
2.157

2.163

0
0

0.393
0.42

0.000
0.000

2.879 2. 879 2. 878 2. 876 2. 876 2. 876 2.876
0.74 0.79 0.74 1,00 0.75 0.77 0.74

-15-

A Component-based Distributed Simulation Architecture and its Performance

The Four Module Configuration Results (100 bytes of data/output)

Date: 8/10/96
System:
A2o>BI->B2->A2
A2->B3->A2

ALR model: T = A + B'Length
Coefficient A (milliaecs)
Coefficient B (millisece/kilobyte)
Total Number of modules and servers
Maximum parallel number of modules

Input: Modules/Process (0=all)
Input: Processes/Machine (0=all)

doubles in data

data msg size (bytes)
request msg size (bytes)
module compute time (secs)
iterations
Total time (sece) - 0.719 sec comp
Total time (secs) - 0 sec comp
Total time (secs)* 0 sec comp, 100 its
Time/iteration (secs) - 0 sec comp
Time/iteration (secs)- 0.719 sec comp

perf4mt - 4 modules, multi.threaded to use ALR processors
Type Name #inputs #outputs
Server A2 2
Module B1 1
Module B2 1
Module B3 1

0,39
0,75

4
3

doubles
2 100
1 100
1 100
1 100

1 2 3 0 1 2 3
2 1 1 0 0 0 0

100 100 100 100 100 100 100
808 808 808 808 808 808 808

4 4 4 4 4 4 4
0.719 0.719 0.719 0.719 0.719 0.719 0319

11 10 10 10 11 11 10
24.05 25.64 21.66 30.34 23.73 24.45 21.59
0.547 0.516 0.391 0.125 0.172 0.125 0.406

1.125
0.0497 0.0516 0.0391 0.0125 0.0156 0.0114 0.0406

2.186 2.564 2.166 3.034 2.157 2.223 2.159

ALR1 processes 2 1 1 1 4 2 2
ALR2 processes 2 1 1 0 0 0 0

Process 1
Modules in process

Machine
#total requests
#total data sends
#requests/iteration
#data sends/iteration

Process 2

Modules in process
Machine
#total requests
#total data sends
#requests/iteration
#data sends/iteration

Process 3
Modules in process
Machine
#total requests
#total data sends
#requests/iteration
#data sends/deration

Process 4
Modules in process
Machine
#total requests
#total data sends
#requests/iteration
#data sends/iteration

A2

1
11
22

1
2

A2,B2 A2,B2,B3 A2,B2,B2,B A2
3

1 1 1
20 10 0
20 10 0

2 1 0
2 1 0

B2
1

11
0
1
0

B1,B3 B1
2 2

20 10
20 10

2 1 0
2 1 0

B2

B1 B1
2

11
11

1
1

0 0 0
0 0 0

B3 B3

2
11
11

1
1

0 0 0
0 0 0

A2,B2

1 1
0 0
0 0
0 0
0 0

B1,B3
1
0
0
0
0

1
0
0
0
0

A2,B2,B3

BI
I
0
0
0
0

-16-

A Component-based Distributed Simulation Architecture and its Performance

The Four Module Configuration Results (100 bytes of data/output)

Date: 8/10/98
System:
A2->BI->B2->A2
A2->B3->A2

ALR model: T = A + B'Length
Coefficient A (millisece)
Coefficient B (millisectdkilobyte)
Total Number of modules and servers
Maximum parallel number of modules

perf4mt - 4 modules, multi-threaded to use ALR processors
Type Name #inputs #outputs doubles
Server A2 2 2 1(30
Module B1 1 1 100
Module B2 1 1 100
Module B3 1 1 100

0.39
0.75

4
3

Input: Modules/Process (O=all)
Input: Processes/Machine (O=all)

doubles in data
data msg size (bytes)
request msg size (bytes)
module compute time (secs)
iterations
Total time (secs) - 0,719 sec comp
Total time (secs) - 0 sec comp
Total time (secs) - 0 sec comp, 100 its
Time/iteration (secs) - 0 sec comp
Time/iteration (secs) - 0.719 sec comp

100
808

4
0.719

11
24.05
0,547

0.0497
2.186

100
808

4
0.719

10
25.64
0.516

0.0516
2.564

100
808

4
0.719

10
21.66
0,391

0.0391
2.166

100
808

4
0.719

10
30.34
0,125
1.125

0.0125
3.034

100
808

4
0.719

11
23.73
0,172

0.0156
2.157

ALR1 processes
ALR2 processes

One Iteration Compute serial (secs)
One Iteration Compute parallel (secs)
Actual' One Iteration Compute (secs)

2,876
2.157
2.186

2.876
2.157
2.564

2.876
2.157
2.156

2.876
2.157
3.034

2.876
2.157
2,157

Total No. Rem. Rqst Msgs/iteration
Total No. Rem. Data Msgs/iteration
Est. Time/Request Msg (millisecs)
Est. Time/Data Msg (millisecs)
Serial Msg Total Time (seconds)
Serial Msg Total Time/iter (seconds)

44
44

0.393
0.996
0.061
0,006

40
40

0.393
0.996
0,056
0.006

20
20

0.393
0.996
0.028
0.003

0
0

0.393
0.996
0.000
0.000

0
0

0.393
0.996
0.000
0.000

Total Serial Time/iter (seconds)
Reduction Factor

2.882
0.74

2.882
0.87

2.879
0.74

2.876
1.05

2.876
0.74

100
808

4
0.719

11
24.45
0.125

0.0114
2.223

2.876
2.157
2.223

0
0

0.393
0.996
0.000
0.000

2.876
0.77

100
808

4
0.719

10
21.59
0.406

0.6406
2.159

2.876
2.157
2.159

0
0

0.393
0.996.
0.000
0.000

2.876
0.74

-17-

A Component-based Distributed Simulation Architecture and its Performance

The Four Module Configuration Results (1000 bytes of data/output)

Date: 8/10198
System:
A2->BI->B2->A2
A2->B3->A2

ALR model: T = A + B*Length
Coefficient A (millisecs)
Coefficient B (millisecs/kilobyte)
Total Number of modules and servers
Maximum parallel number of modules

Input: Modules/Process (0=all)
Input: Processes/Machine (0=all)

doubles in data
data msg size (bytes)
request msg size (bytes)
module compute time (secs)
iterations
Total time (secs) - 0.719 sec comp
Total time (secs) - 0 sec comp
Total time (secs) - 0 sec comp, 100 its
Time/iteration (secs) - 0 sec comp
Time/iteration (secs) - 0.719 sec comp

Type Name #inputs #outputs doubles
Server A2 2 2 1,000
Module B1 1 1 1,000
Module B2 t 1 1,000
Module B3 1 1 1,000

0.39
0.75

4
3

1 2 3 0 1 2 3
2 1 1 0 0 0 0

1000 1000 1000 1000 1000 1000 1000
8008 8008 8008 8008 8008 8008 8008

4 4 4 4 4 4 4
0.719 0.719 0.719 0.719 0.719 0.719 0.719

11 10 10 10 11 11 10
24.33 25.94 22.56 28.8 23.78 24.55 22.39
0.875 0828 0.609 0.187 0.234 0.203 0.484
5.219 5.704 4.016 1.797 1.691 1.891 4.75

0.0795 0.0828 0.0609 0.0187 0.0213 0.0185 0.0484
2.212 2.594 2.256 2880 2.162 2.232 2.239

ALR1 processes 2 1 1 1 4 2 2
ALR2 processes 2 1 1 0 0 0 0

Process 1
Modules in process

Machine

#total requests
#total data sends
#requests/iteration
#data sends/iteration

A2

B2

B1

B3

Process 2
Modules in process
Machine
#total requests
#total data sends
#requests/iteration
#data sends/iteration

Process 3
Modules in process
Machine
#total requests
#total data sends
#requests/iteration
#data sends/iteration

Process 4
Modules in process
Machine
#total requests
#total data sends

#requests/iteration
#data sends/iteration

I
11
22

I
2

A2,B2 A2,B2,B3 A2,B2,B2,B A2
3

1 1 1
20 10 0
20 10 0

2 1 0
2 1 0

A2,B2

1
0
0
0
0

B1,B3 B1 B2 B1 ,B3
1 2 2 1

11 20 10 0
0 20 10 0
1 2 1 0 0
0 2 1 0 0

2
11
11

1
1

0 0 0
0 0 0

0 0 0
0 0 0

B1

B3

2
11
11

1
1

A2,B2,B3

1
0
0
0
0

B1
1
0
0
0
0

1
0
0
0
0

-18-

A Component-based Distributed Simulation Architecture and its Performance

The Four Module Configuration Results (1000 bytes of data/output)

Date: 8/10/98
System:
A2->BI->B2->A2
A2->B3->A2

ALR model: T = A + B*Length
Coefficient A (millisecs)
Coefficient B (millisecs/kilobyte)
Total Number of modules and servers
Maximum parallel number of modules

Input: Modules/Process (0=all)
Input: Processes/Machine (0=all)

doubles in data
data msg size (bytes)
request msg size (bytes)
module compute time (secs)
iterations
Total time (secs) - 0.719 sec comp
Total time (secs) - 0 sec comp
Total time (set:s) - 0 sec comp, 100 its
Time/iteration (secs) - 0 sec comp
Time/iteration (secs) - 0.719 sec comp

Type Name #inputs #outputs doubles
Server A2 2 2 1,000
Module B1 1 1 1,000
Module B2 1 1 1,000
Module B3 1 1 1,000

0.39
0.75

4
3

1 2 3 0 1 2 3
2 1 1 0 0 0 0

1000 1000 1000 1000 1000 1000 1000
8008 8008 8008 8008 8008 8008 8008

4 4 4 4 4 4 4
0.719 0.719 0.719 0.719 0.719 0,719 0.719

11 10 10 10 11 11 10
24.33 25.94 22.56 28.8 23.78 24.55 22.39
0.875 0.828 0.609 0.187 0.234 0.203 0.484
5.219 5.704 4.016 1.797 1.891 1.891 4.75

0.0795 0.0828 0.0609 0.0187 0.0213 00185 0.0484
2.212 2.594 2.256 2.880 2.162 2.232 2.239

ALR1 processes 2 1 1 1 4 2 2
ALR2 processes 2 1 1 0 0 0 0

One Iteration Compute serial (secs)
One Iteration Compute parallel (secs)
Actual One Iteration Compute (secs)

Total No. Rein. Rqst Msgs/iteration
Total No. Rem. Data Msgs/iteration
Est. Time/Request Msg (millisecs)
Est. Time/Data Msg (millisecs)
Serial Msg Total Time (seconds)
Serial Msg Total Time/iter (seconds)

Total Serial Time/iter (seconds)
Reduction Factor

2.876 2.876 2.876 2.876 2.876 2.876 2.876
2.157 2.157 2.157 2.157 2.157 2.157 2.157
2,212 2.594 2.256 2.880 2.162 2.232 2.239

44 40 20 0 0 0 0
44 40 20 0 0 0 0

0.393 0.393 0.393 0.393 0.393 0.393 0.393
6.396 6.396 6.396 6.396 6.396 6.396 6.396
0.299 0,272 0.136 0.000 0.000 0000 0,000
0.027 0.027 0.014 0.000 0.000 0 000 0.000

2.903 2.903 2. 890 2.876 2. 876 2 876 2.876
0.74 0.87 0.76 0.99 0.74 077 0.76

-19-

A Component-based Distributed Simulation Architecture and its Performance

-20-

A Component-basedDistributedSimulationArchitectureandits Performance

2.5.2 Example 2: The Eight Module Configuration Results

The Eight Module Configuration Results consists of two solvers and six modules. Each

solver has two inputs and two outputs. Only one experiment is shown here, the case of

outputs with 1000 doubles of data. The data table is organized the same way as the

previous 4 module configuration and are shown on the following pages. The update times

for the experiments were again taken to be zero seconds and 0.719 seconds. The former is

all overhead and data transmission time whereas the latter has a large (compared to the

overhead) update time. Looking at the time/iteration for the two cases for each

experiment (column) in lines 20 and 21 shows that the overhead/data transmission time is

around 76 milliseconds/iteration when there is little overlap and as low as 30

milliseconds/iteration in an experiment with large overlap.

The last line shows the reduction to 0.38 for the maximum overlap, a reduction of 2.5 : 1

in the computation time.

-21-

A Component-basedDistributedSimulationArchitecture and its Performance

The Eight Module Configuration Results (lOOO bytes of data/output)

Date: 8/11/98

System:
A21->Bl->B2->A22->B11->B21->A21
A21->B3->A22->B31->A21

ALR model: T = A + B'Length
Coefficient A (millisecs)
Coefficient B (millisecs/kilobyte)
Total Number of modules and servers
Maximum parallel number of modules

Input: Modules/Process (0=all)
Input: Processes/Machine (0=all)

doubles in data
data msg size (bytes)
request msg size (bytes)
module compute time (sece)
iterations
Total time (secs) - 0.719 sec comp
Total time (sece) - 0 sec comp
Total time (secs) - 0 sec comp, 100 its
Time/iteration (sece) - 0 sec comp
Time/iteration (sece) - 0.719 sec comp

perf8mt - 8 modules, multi-threaded to use ALR processors
Type Name #inputs #outputs doubles
Server A2,A21 2 2 1,000
Module B1 ,B11 1 1 1,000
Module B2.B21 1 1 1,000
Module B3,B31 1 1 1,000

0.39
0.75

8
3

4 3 2 1 0 1 2 3
1 2 2 4 0 0 0 0

1000 1000 1000 1000 1000 1000 1000 1000
8008 8008 8008 8008 8008 8008 8008 8008

4 4 4 4 4 4 4 4
0,719 0.719 0.719 0,719 0.719 0.719 0.719 0.719

11 11 11 11 10 11 11 11
35.52 27.77 25.03 24.73 57.61 24.28 24.83 30.66
0.843 0.875 0.703 0.703 0.375 0.453 0.328 0.657
7.719 6.719 5,406 4.875 3.567 3.171 2.813 2.516

0.0766 0.0795 0.0639 0.0639 0.0375 0.0412 0.0298 0.0597
3.229 2.525 2.275 2.248 5.761 2.207 2.239 2.787

ALR1 processes 1 2 2 4 1 8 4 3
ALR2 processes 1 1 2 4 0 0 0 0

Process 1

Modules in process

Machine

#total requests
#total data sends

#requests/iteration
#data sends/iteration

Process 2

Modules in process

Machine

#total requests
#total data sends

#requests/Aeration
#data sends/iteration

Process 3
Modules in process
Machine

#total requests
#total data sends

#requests/iteration
#data sends/iteration

Process 4

Modules in process
Machine
#total requests
#total data sends

#requests/Aeration
#data sends/iteration

A21,B21,B
31,B1

1
22
22

2
2

A21,B21,B A21,B21 A21 all8 mods A21
31

1 1 1 1
20 11 0 0
20 22 11 0

1.818182 1 0 0
1.818182 2 1 0

B2,B3,B11B1,B2,B3 B31,B1 B21
,B22

2 1 1 1
22 20 11 11
22 20 0 0

2 1.818182 1 1
2 1.818182 0 0

B21

B11,A22 B2,B3 B31
2 2 1

20 11 11
20 11 0

1.818182 1 1
1.818182 1 0

B31

B11,A22 B1
2 1

11 0
11 11

0 1 0
0 1 1

B1

A21 ,B21

1
11
22

1
2

B31,B1

1
11
0
1
0

B2,B3
1

11
11

1
1

B11 ,A22
1

11
11

1
1

A21 ,B21 ,B
31

1
11.
22

1
2

B1 ,B2,B3

1
11

0
1
0

B11,A22
1

11
11

1
1

-22-

A Component-based Distributed Simulation Architecture and its Performance

The Eight Module Configuration Results (1000 bytes of data/output)

Date: 8/11/98

System:
A21->B1->B2->A22->B11->B21->A21
A21 ->B3->A22->B31->A21

ALR model: T = A + B'Length
Coefficient A (millisecs)
Coefficient B (millisec_kilobyte)
Total Number of modules and servers

Maximum parallel number of modules

Input: Modules/Process (0=all)
Input: Processes/Machine (0=all)

perfSmt - 8 modules, multi-threaded to use ALR processors
Type Name #inputs #outputs doubles
Server A2,A21 2 2 1,000
Module B1 oB11 1 1 1,000
Module B2.B21 1 1 1,000
Module B3,B31 1 1 1,000

0,39
0,75

8
3

4 3 2 1 0 1 2 3
1 2 2 4 0 0 0 0

Process 5
Modules in process
Machine

#total requests
#total data sends

#requestsf_eration
#data sends/iteration

Process 6

Modules in prooess
Machine

#total requests
#total data sends

#requests/iteration
#data sends/iteration

Process 7

Modules in process
Machine

#total requests
#total data sends

#requests/iteration
#data sends/iteration

B2
2

11
0

0 0 0 1 0
0 0 0 0 0

B3
2

11
0

0 0 0 1 0
0 0 0 0 0

Bll
2
0

11
0 0 0 0 0
0 0 0 1 0

B2

B3

Bll

Process 8
Modules in process
Machine

#total requests
#total data sends

#requests/iteration
#data sends/iteration

A22
2
0

11
0 0 0 0 0
0 0 0 1 0

A22

0 0 0
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

-24-

A Component-based Distributed Simulation Architecture and its Performance

The Eight Module Configuration Results (1000 bytes of data/output)

Date: 8/11/98

System:
A21->Bl->B2°>A22->B11->B21->A2.1
A21->B3->A22->B31 ->A21

ALR model: T = A + B°Length
Coefficient A (millisecs)
Coefficient B (millisec_kilobyte)
Total Number of modules and sewers
Maximum parallel number of modules

Input: Modules/Prooess (0=all)
Input: Processes/Machine (0=all)

perf8mt - 8 modules, multi-threaded to use ALR processors
Type Name #inputs #outputs doubles
Server A2,A2.1 2 2 1,000
Module B1 ,B11 1 1 1,000
Module B2.B21 1 1 1,000
Module B3,B31 1 1 1,000

0.39
0.75

8
3

4 3 2 1 0 1 2 3
1 2 2 4 0 0 0 0

One Iteration Compute serial (secs)

One Iteration Compute parallel (secs)
Actual One Iteration Compute (secs)

Total No. Rein. Rqst Msgs/iteration
Total No. Rem. Data Msgs/iteration
Est. Time/Request Msg (milllsecs)
Est. Time/Data Msg (millisecs)
Serial Msg Total Time (seconds)
Serial Msg Total Time/iter (seconds)

Total Serial Time/iter (seconds)
Reduction Factor

5.752 5.752 5.752 5.752 5.752 5.752 5.752 5.752
2.157 2.157 2.157 2.157 2.157 2.157 2.157 2.157
3.229 2.525 2.275 2.248 5.761 2.207 2.239 2.787

44 60 44 44 0 0 44 33
44 60 44 44 0 0 44 33

0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393
6.396 6.396 6.396 6.396 6.396 6.396 6.396 6.396
0.299 0.407 0.299 0.299 0.000 0.000 0.299 0.224
0.027 0.037 0.027 0.027 0.000 0.000 0.027 0.020

5.779 5.789 5.779 5.779 5.752 5.752 5.779 5.772
0.55 0.43 0.38 0.38 1.00 0.38 0.38 0.47

-25-

A Component-based Distributed Simulation Architecture and its Performance

2.6 Conclusions and further work

In all the experiments, the worst case experiment is the one where all modules are in one

process so that no parallel computation can be done (the fifth column of the tables where
both Modules/Process and Processes/Machine are set to 0 or "all". The best case would

allocate one module per process and every process to a separate machine. This could not

be done with the software used for this test. The best experiment of those run was to

allocate all processes to 4 machines. At any rate, the experiments indicate that the

estimation of reduction of compute time can be done simply on the basis of the module

update times if they are large compared to the overhead of message passing and remote-

object method calls (the DCOM overhead). This is clearly the case in the experiments

where a an update time of 0.719 seconds swamped the communication overhead. In fact

the communication overhead was in the range of 2% to 5%. This is encouraging in that

the generality in software use by basing the communication software on standard remote-

object methodologies such as CORBA and DCOM does not appreciably add overhead

when the module update times are high.

It is interesting to examine the time/iteration when the module update time is zero. There

the overhead time varies by as much as 2.7 to I (and this does include the time required to

transmit 1000 doubles between modules). Hence for a situation involving many modules

each of which has a brief update time comparable to the overhead time can significantly

reduce computation time by proper distribution across a network of processors.

The work demonstrated the desirabilityof using a generalobjectmethodology such as

CORBA and DCOM as the basisfordistributingthe applications.These methodologies

areheavilysupportedbecause of theirimportance inlargecommercial applications.

Hence the availablesupportforgeneratingand distributingsuch objectsisextensiveand

gettingbettereach year.

Two interesting questions have not been resolved and could be studied in future work.

The first is the detailed analysis of the potential overlap of communication overhead; the

second the use of the models evaluated here as a basis for dynamic distribution of

simulation applications.

Future work: Analysis of overhead overlap via queuing networks

The analysis presented in this paper can not predict the precise overlap of computation

done in parallel computations. Instead, a detailed queuing network analysis must be

performed to estimate this overlap. The models generated here, however, provide the

necessary information needed to create such a queuing model. In those cases where the

overhead is comparable to the update computation, overlap becomes very important. A

study of this overlap using a queuing model would help considerably in understanding

how to distribute the actual modules of a real application. Note that in the studies

-26-

A Component-basedDistributedSimulationArchitectureandits Performance

reportedin this paper, all the computation update-times of all modules were taken to be

the same (including the update time of the solvers). This is not realistic and is a cause of

great difficulty in determining the best way to distribute the application.

Future work: use of the models as basis for dynamic distribution and re-distribution

of the computation

Much of the motivation for the work reported here and previous work was to allow great

freedom in distributing the application to minimize the computation time. Especially

important is the self-scheduling basis for the state of the individual modules developed.

With the models now available, it would be possible to modify the simulation software

system such that the package measures the actual time required for the update of each

module during each iteration. Using these values, the model could be used to choose a

better distribution for the modules to make better utilization of the available processors.

This is entirely feasible with the current design because the state of the module at any

instant has been deliberately made small (iteration number, internal state number, and

presence or absence of an output request for the next iteration). Hence it would be

feasible to modify the program so that the moving of a module from one processor to

another could be carried out as follows. First create the module in the desired processor.

Second, using the same communication steps as now used at startup time, send the

connector addresses to the appropriate modules connected to its inputs and outputs.

Third, send the module the state information from the existing module. Finally, delete the

exiting module.

This would allow the computation to review the distribution as the iterations take place

and to re-distribute the modules on an individual basis at the end of an iteration. It is

likely that this would be fruitful because it would seem that individual modules and sub-

groups of modules might require more or less computation during the lifetime of the

simulation. In particular, the number of iterations to converge a loop containing a solver

might well vary over time, thereby changing the "bottleneck" in the simulation.

References

"Performance Analysis of an Actor-Based Distributed Simulation", J. D. Schoeffler,

NASA report, 1997.

"A Model For Estimating Overhead in DCOM and CORBA Function Calls", J. D.

Schoeffler, NASA Report, 1998

-27-

